Chapter 1 Physical Quantities and Measurements

Curriculum Specification	Remarks			
	Before	After	Revision	
$\mathbf{1 . 1} \quad \begin{array}{l}\text { Dimensions of physical quantities }\end{array}$				
a) Define dimension (C1, C2)				
b) Determine the dimensions of derived quantities (C3, C4)				
c) Verify the homogeneity of equations using dimensional				
analysis (C3, C4)				

Revision: Quantities and Unit Conversion

Physics Quantities

Physics experiments involve the measurement of a variety of quantities, and we generally use numbers to describe the results of measurements. Any number that is used to describe a physical phenomenon quantitatively is called a physical quantity. It consists of a precise numerical value and a unit. Physical quantity can be categorized into 2 types: base quantity and derived quantity

$$
\{\text { Quantity }\}=\{\text { Numerical value } \times \text { Unit }\}
$$

Base quantities are the fundamental quantities which are distinct in nature and cannot be defined by other quantities. The corresponding units for these quantities are called base quantities. Scientist has recognised seven quantities as base quantities:

No.	Basic Quantity	Symbol	SI unit (with symbol)
1	Length	l	metre (m)
2	Mass	m	kilogram (kg)
3	Time	t	second (s)
4	Temperature	T / θ	kelvin (K)
5	Electric current	I	ampere (A)
6	Amount of substance	N	mole (mol)
7	Luminous Intensity		candela (cd)

All other quantities can be defined in terms of the above seven base quantities, and are referred to as derived quantities, since they are combinations of the base units. Derived units will be introduced from time to time, as they arise naturally along with the related physical laws.

Unit

When dealing with the law and equations of physics it is very important to use a consistent set of units. In this text, we emphasize the system of units known as SI units, which stands for the French phrase "Le Système International d'Unités."

Since any quantity, such as length, can be measured in several different units, it is important to know how to convert from one unit to another. Unit is defined as a standard size of measurement of physical quantities. Unit prefixes is used for presenting larger and smaller values.

Prefix	Symbol	Multiple	Prefix	Symbol	Multiple
tera	T	$\times 10^{12}$	centi	c	$\times 10^{-2}$
giga	G	$\times 10^{9}$	milli	m	$\times 10^{-3}$
mega	M	$\times 10^{6}$	micro	μ	$\times 10^{-6}$
kilo	k	$\times 10^{3}$	nano	n	$\times 10^{-9}$
desi	d	$\times 10^{-1}$	pico	p	$\times 10^{-12}$

Physics problems frequently ask you to convert between different units of measurement. It is always more convenient to convert all unit of measurements into SI unit when solving physics problems

For example, you may measure the number of centimetres your toy car goes in three minutes and thus be able to calculate the speed of the car in centimetres per minute, but that's not a standard unit of measure, you cannot use it to calculate the work done or the power of the car, so you need to convert centimetres per minute to meters per second.

Example 1

If you wish to remove a unit prefix from the quantity, substitute the unit prefix with its value.

Example 2

If you wish to add a unit prefix into the quantity, divide the value of the unit prefix.

$$
7 \mathrm{~m}=7 \times\left(\frac{\mathrm{k}}{\mathrm{k}}\right) \mathrm{m}=\left(\frac{7}{\mathrm{k}}\right) \mathrm{km}=\left(\frac{7}{10^{3}}\right) \mathrm{km}=7 \times 10^{-3} \mathrm{~km}
$$

substitute the denominator with value then divide the $\mathbf{7}$ by the denominator (unit prefix)

Example 3a

If the quantity has squared or cubed unit, then you have to add a cube on the unit prefix.

$$
\underbrace{2 \mathrm{~cm}^{3}=2 \mathrm{c}^{3} \mathrm{~m}^{3}}=2 \times\left(10^{-2}\right)^{3} \mathrm{~m}^{3}=2 \times 10^{-6} \mathrm{~m}^{3}
$$

The true formof $2 \mathrm{~cm}^{3}$ is $2(\mathrm{~cm})^{3}$, thereforeit can be written as $2 \mathrm{c}^{3} \mathrm{~m}^{3}$ in unit conversion

Example 3b

$$
2 \mathrm{~m}^{3}=2 \times\left(\frac{\mathrm{c}^{3}}{\mathrm{c}^{3}}\right) \mathrm{m}^{3}=\frac{2}{\mathrm{c}^{3}} \mathrm{c}^{3} \mathrm{~m}^{3}=\frac{2}{\left(10^{-2}\right)^{3}} \mathrm{c}^{3} \mathrm{~m}^{3}=2 \times 10^{6} \mathrm{~cm}^{3}
$$

Example 4

If the quantity has a derived unit, then convert the units separately.

$$
\underbrace{3 \mathrm{~km} \mathrm{~h}^{-1}=\frac{3 \mathrm{~km}}{1 \text { hour }}}=\frac{3 \times 10^{3} \mathrm{~m}}{3600 \mathrm{~s}}=0.83 \mathrm{~m} \mathrm{~s}^{-1}
$$

Change it into fraction form to make it easier to convert

Law of Indices

- $x^{0}=1$
- $x^{-n}=\frac{1}{x^{n}}$
- $x^{n} \times x^{m}=x^{n+m}$
- $x^{n} \div x^{m}=x^{n-m}$
- $\left(x^{n}\right)^{m}=x^{n \times m}$
- $x^{\frac{n}{m}}=\sqrt[m]{x^{n}}$

Note:

\mathbf{m} and \mathbf{s} with a space between them means meter second, \mathbf{m} and \mathbf{s} represent two separate units in this case

\mathbf{m} and \mathbf{s} without space in between means millisecond, \mathbf{m} is acting as unit prefix in this case

1.1 Dimensions of Physical Quantities

- In physics, the term dimension is used to refer to the physical nature of a quantity and the type of unit used to specify it.
- The seven fundamental quantities are enclosed in square brackets [] to represent its dimensions: length [L], time [T], mass [M], electric current [A], amount of substance [mol], temperature [K] and luminous intensity [Cd].
- Dimensional analysis is used to check mathematical relations for the consistency of their dimensions.
- A dimensional check can only tell you when a relationship is wrong. It can't tell you if it is completely correct because the numerical factors do not affect dimensional check.
- Standard mathematical functions such as trigonometric functions (such as sine and cosine), logarithms, or exponential functions that appear in the equation must be dimensionless. These functions require pure numbers as inputs and give pure numbers as outputs.

Example 5

Given $v=u+\frac{1}{2} a t^{2}$. Check if it's dimensionally homogeneous.

$$
\left[\frac{L}{T}\right]=\left[\frac{L}{T}\right]+\left[\frac{L}{\mathscr{D}^{2}}\right]\left[\mathscr{L}^{\mathscr{}}\right]=\left[\frac{L}{T}\right]+[L]
$$

Note: Dimensions cancel just like algebraic quantities and numerical factors, like $1 / 2$ the here, do not affect dimensional checks.
The dimension on the left of the equals sign does not match those on the right, so the equation is incorrect.

Example 6

Given $s=u t-\frac{1}{2} a t^{2}$. Check if it's dimensionally homogeneous.

$$
[L]^{?}=\left[\frac{L}{X}\right]\left[[X]-\left[\frac{L}{X^{\chi}}\right]\left[\mathbb{D}^{2}\right]=[L]-[L]=[L]\right.
$$

Note: Addition and subtraction won't change the dimension and it can only be done if both quantities have same dimensions.
The dimension on the left of the equals sign matches that on the right, so this relation is dimensionally correct.

This is an example why dimensional analysis can't tell whether an equation is correct. Although the equation is dimensionally correct, this equation is in fact incorrect due to incorrect math operation. The correct equation should be $s=u t+\frac{1}{2} a t^{2}$.

1.2 Scalars and Vectors

A scalar quantity is one that can be described with a single number (including any units) giving its size or magnitude. Example: mass, temperature, pressure, electric current, work, energy and etc.

A quantity that deals inherently with both magnitude and direction is called a vector quantity. Because direction is an important characteristic of vectors, arrows are used to represent them; the direction of the arrow gives the direction of the vector. By convention, the length of a vector arrow is proportional to the magnitude of the vector. Example: displacement, velocity, force and etc.
Magnitude of vector \vec{A} can be written as $|A|$
Direction of vector can be represented by using:

- Direction of compass

Example: East, west, north, south, north-east, north-west, south-east and south-west

- Angle with a reference line.

Example: A boy throws a stone at a velocity of $20 \mathrm{~m} \mathrm{~s}^{-1}, 50^{\circ}$ above horizontal.

- Cartesian coordinates
- Polar coordinates
- Denotes with + or - signs

Adding parallel vectors:

- Vectors in the same directions

$$
\vec{A}+\vec{B}=(+3)+(+7)=+10 \mathrm{~N}
$$

To the right

- Vectors in the opposite directions

$$
\vec{A}+\vec{B}=(-3)+(+7)=+4 \mathrm{~N}
$$

To the right
The direction of resultant vector \boldsymbol{R} is in the direction of the bigger vector

Adding perpendicular vectors:
The magnitude of the resultant vector can be determined by using Pythagorean Theorem

Magnitude:

$\vec{R}=\sqrt{(+3)^{2}+(+4)^{2}}=+5 \mathrm{~N}$

Direction:

$\theta=\tan ^{-1}\left(\frac{4}{3}\right)=53.1^{\circ}$ above + ve x - axis

Adding vectors at other angles:
When \vec{A} and \vec{B} are neither perpendicular nor parallel to each other, then you had to resolve the vectors into 2 perpendicular vector components with the aid of trigonometry.

y-component

above-ve x-axis	above +ve x-axis
below-ve x-axis	below +ve x-axis

Alternative for Step 2: Make a table

Step 1: Resolve \vec{A} and \vec{B} into $\vec{A}_{x}, \vec{A}_{y}, \vec{B}_{x}$ and \vec{B}_{y}
$\cos \theta=\frac{\text { adj }}{\text { hyp }}=\frac{A_{x}}{\vec{A}} \quad \rightarrow A_{x}=A \cos \theta$
$\sin \theta=\frac{\mathrm{opp}}{\mathrm{hyp}}=\frac{A_{y}}{\vec{A}} \quad \rightarrow A_{y}=A \sin \theta$
*Repeat the same step for \vec{B}
Step 2: Calculate the sum for each axis

$$
\begin{aligned}
& R_{x}=A_{x}+\left(-B_{x}\right) \quad R_{y}=A_{y}+B_{y} \\
& \text {-ve because pointing to the left }
\end{aligned}
$$

Step 3: Determine the magnitude (resultant)

$$
\text { Resultant, } R=\sqrt{\left(R_{x}\right)^{2}+\left(R_{y}\right)^{2}}
$$

Step 4: Determine the direction

$$
\theta=\tan ^{-1}\left|\frac{R_{y}}{R_{x}}\right|
$$

Remember to describe the position

Vector	x-component	y-component
A	$A_{\mathrm{x}}=A \cos \theta_{\mathrm{A}}$	$A_{\mathrm{y}}=A \sin \theta_{\mathrm{A}}$
B	$-B_{\mathrm{x}}=-B \cos \theta_{\mathrm{B}}$	$-B_{\mathrm{y}}=B \sin \theta_{\mathrm{B}}$
Resultant, \boldsymbol{R}	$R_{\mathrm{x}}=A_{\mathrm{x}}-B_{\mathrm{x}}$	$R_{\mathrm{y}}=A_{\mathrm{y}}+B_{\mathrm{y}}$

Unit vector

A unit vector is a vector that has a magnitude of 1 with no units. The purpose of unit vector is only to describe the direction of vectors.

In the Cartesian coordinate system, the unit vectors along the x, y and z axes are represented by \hat{i}, \hat{j} and \hat{k} respectively.

For example:

Additional Knowledge: Vector Multiplication

Since vector has direction as well as magnitude, they cannot be multiplied in the same way the scalars are. There are three ways to define how to multiply vectors that we find useful in physics:

- multiplication of a vector by a scalar
- multiplication of one vector by a second vector to produce a scalar - scalar product
- multiplication of one vector by a second vector to produce another vector - vector product

Dot (scalar) product

Scalar (or dot) product is defined as the product of the magnitude of one vector (say B) and the component (or projection) of the other vector along the direction of the first $(A \cos \theta)$.

For example:

$$
\vec{A} \bullet \vec{B}=B(A \cos \theta)
$$

$\vec{A} \bullet \vec{B}=$ zero (minimum) when $\boldsymbol{\theta}=\mathbf{9 0}{ }^{\circ}$ because $\cos 90^{\circ}=0$
$\vec{A} \bullet \vec{B}=$ maximum value when $\boldsymbol{\theta}=\mathbf{0}^{\circ}$ because $\cos 0^{\circ}=1$

The angle range from 0° to 180° :

- $0^{\circ}<\theta<90^{\circ} \quad$ scalar product is positive
- $\theta=90^{\circ} \quad$ scalar product is zero
- $90^{\circ}<\theta<180^{\circ}$ scalar product is negative

Commutative law applied to dot product:

$$
\vec{B} \bullet \vec{A}=B(A \cos \theta) \stackrel{\text { equal }}{\rightleftarrows} \vec{A} \bullet \vec{B}=A(B \cos \theta)
$$

Example of physical quantity: $W=F \bullet s=F s \cos \theta$

Cross (vector) product

The vector (or cross) product of two vectors \vec{A} and \vec{B} is defined as a vector that is perpendicular to both \vec{A} and \vec{B} with a direction given by the right-hand rule, and whose magnitude is equal to the area of the parallelogram that the vectors span.

$\vec{A} \times \vec{B}=$ zero (minimum) when $\boldsymbol{\theta}=\mathbf{0}^{\circ}$ because $\sin 0^{\circ}=0$
$\vec{A} \times \vec{B}=\mathbf{m a x i m u m}$ value when $\boldsymbol{\theta}=\mathbf{9 0}^{\circ}$ because $\sin 90^{\circ}=1$

The angle range from 0° to 180°, therefore the vector product is always positive.
Vector product is not commutative.

$$
\vec{A} \times \vec{B} \neq \vec{B} \times \vec{A} \quad \text { but } \quad \vec{A} \times \vec{B}=-(\vec{B} \times \vec{A})
$$

Direction of vector product is determined by the right-hand rule.

1.3 Significant Figures and Uncertainties Analysis

Significant Figures

The number of significant figures in a number is the number of digits whose values are known with certainty.

For example:

- If we say it is roughly 80 km between two cities, then there is only one significant figure (the 8) since the zero is merely a place holder.
- If we say it is 80 km within an accuracy of 1 to 2 km , then 80 has two significant figures.
- If it is precisely 80 km , to within $\pm 0.1 \mathrm{~km}$, then we write 80.0 km (three significant figures).

Rules for identifying significant figures:

1. Nonzero digits are always significant.

$$
55 \rightarrow 2 \text { s.f. }
$$

2. Final or ending zeros written to the right of the decimal point are significant.

$$
5.0 \rightarrow 2 \text { s.f. }
$$

3. Zeros written on either side of the decimal for the purpose of spacing the decimal point are not significant.

$$
0.050 \rightarrow 2 \text { s.f. }
$$

4. Zeroes written between significant figures are significant.

$$
505 \rightarrow 3 \text { s.f. }
$$

When two or more numbers are used in a calculation, the number of significant figures in the answer is limited by the number of significant figures in the original data.

For example:

- Multiplication or division: No more than in the number with fewest significant figures.

$$
(0.745 \times \mathbf{2 . 2}) / 3.885=0.42 \text { (2 s.f. })
$$

- Addition or subtraction: Determined by the number with the largest uncertainty (location of the decimal point that matter).

$$
27.153+138.2-11.74=153.6 \text { (1 d.p.) }
$$

Uncertainties

No measurement is absolutely precise. There is an uncertainty associated with every measurement. Among the most important sources of uncertainty, other than blunders, are the limited accuracy of every measuring instrument and the inability to read an instrument beyond some fraction of the smallest division shown.

The uncertainty of a measurement depends on its type and how it is done. The usual way to express the error in a measurement is to write down the result of the measurement, followed by a plus minus symbol and uncertainty in the measurement: $(x \pm \Delta x)$

Example:

If a measurement of length is found to be 3.24 cm with an uncertainty of 0.02 cm . It should be written as:

**Decimal points must be consistent

Percentage of uncertainty is given by: $\frac{\Delta x}{x} \times 100 \%$
A measurement with a smaller \% uncertainty is more accurate than a measurement with a higher \% uncertainty.

Method to determine the uncertainty for single reading
i) If the reading is taken from a single point or at the end of the scale:

$$
\Delta x=\frac{1}{2} \times(\text { the smallestdivision of the scale })
$$

ii) If the readings are taken from two points on the scale:

$$
\begin{aligned}
& \Delta x=2 \times \frac{1}{2} \times(\text { the smallestdivision of the scale }) \\
& \Delta x=\text { the smallestdivision of the scale }
\end{aligned}
$$

iii) If the apparatus has a vernier scale:
$\Delta x=$ the smallestdivision of the vernier scale

Method to determine the uncertainty for repeated reading

For a set of n repeated measurements, the best value is the average value.

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

The uncertainty is given by:

$$
x=\frac{\sum_{i=1}^{n}\left|\bar{x}-x_{i}\right|}{n}
$$

Example: Refer experiment one.

Uncertainties of gradient and y-intercept for a straight line graph
Gradient: $\Delta m=\frac{m_{\max }-m_{\min }}{2}$
y-intercept: $\Delta c=\frac{c_{\text {max }}-c_{\text {min }}}{2}$

Example: Lab manual - Guidance for students.

Combination of uncertainties

1. Addition or subtraction

$$
x=a+b-c \quad \rightarrow \quad \Delta x=\Delta a+\Delta b+\Delta c
$$

2. Multiplication with constant \boldsymbol{k}

$$
x=k a \quad \rightarrow \quad \Delta x=k \Delta a
$$

3. Multiplication or division

$$
x=\frac{a b}{c} \quad \rightarrow \quad \frac{\Delta x}{x}=\left(\frac{\Delta a}{a}+\frac{\Delta b}{b}+\frac{\Delta c}{c}\right)
$$

4. Index

$$
x=a^{n} \quad \rightarrow \quad \frac{\Delta x}{x}=n\left(\frac{\Delta a}{a}\right)
$$

Example: Lab manual - Guidance for students.

Percent Uncertainty vs. Significant Figures

The significant figures rule is only approximate, and in some cases may underestimate the accuracy (or uncertainty) of the answer. Suppose for example we divide 97 by 92 :

$$
\frac{97}{92}=1.05 \approx 1.1
$$

Both 97 and 92 have two significant figures, so the rule says to give the answer as 1.1. Yet the numbers 97 and 92 both imply an uncertainty of ± 1 if no other uncertainty is stated. Both 92 ± 1 and 97 ± 1 imply an uncertainty of about 1%. But the final result to two significant figures is 1.1 , with an implied uncertainty of ± 0.1, which is an uncertainty of about 10%. It is better in this case to give the answer as 1.05 (which is three significant figures). Because 1.05 implies an uncertainty of ± 0.01 which is 1%, just like the uncertainty in the original numbers 92 and 97 .

SUGGESTION: Use the significant figures rule, but consider the $\%$ uncertainty too, and add an extra digit if it gives a more realistic estimate of uncertainty.

Exercise

Revision	
1.	The unit of impulse is $\mathbf{N} \mathbf{s}$. Express $\mathbf{N} \mathbf{s}$ in terms of the base SI units.
2.	The highest waterfall in the world is Angel Falls in Venezuela, with a total drop of 979.0 m. Express this drop in kilometre.
3.	A light-year is the distance light travels in one year (at speed $=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$). a) How many meters are there in 1.00 light-year? b) An astronomical unit (AU) is the average distance from the Sun to Earth, $1.50 \times 10^{8} \mathrm{~km}$. How many AU are there in 1.00 light-year?
4.	Suppose a man's scalp hair grows at a rate of 0.35 mm per day. What is this growth rate in meter per second?
5.	The density of blood is $13.6 \mathrm{~g} \mathrm{~cm}^{-3}$. Expressed this density in $\mathrm{kg} \mathrm{m}^{-3}$.

Dimensions of Physical Quantities

1.	What are the dimensions of density, which is mass per volume?
2.	The speed of an object is given by the equation $v=A t^{3}-B t$ where t refers to time. a) What are the dimensions of A and B? b) What are the SI units for the constants A and B?
3.	Consider the equation $v=\frac{1}{2} z x t^{2}$. The dimension of the variables v, x, and t are [L]/[T], [L], and [T], respectively. The numerical factor $1 / 2$ is dimensionless. What must be the dimensions of the variable z, such that both sides of the equation have the same dimensions?
4.	A spring is hanging down from the ceiling, and an object of mass m is attached to the free end. The object is pulled down, thereby stretching the spring, and then released. The object oscillates up and down, and the time T required for one complete up-and-down oscillation is given by the equation $T=2 \pi \sqrt{\frac{m}{k}}$, where k is known as the spring constant. What must be the dimension of k for this equation to be dimensionally correct?

Scalars and Vectors

1. A car moves at a velocity of $50 \mathrm{~m} \mathrm{~s}^{-1}$ in a direction north 30° east. Calculate the component of the velocity due north and due east.
2. Given three vectors P, Q and R as shown in Figure

Calculate the resultant vector of P, Q and R.

3.	At a picnic, there is a contest in which hoses are used to shoot water at a beach ball from three
directions. As a result, three forces act on the ball, $\overrightarrow{\boldsymbol{F}}_{\mathbf{1}}, \overrightarrow{\boldsymbol{F}}_{2}$, and $\overrightarrow{\boldsymbol{F}}_{3}$. The magnitudes of $\overrightarrow{\boldsymbol{F}}_{\mathbf{1}}$ and	
$\overrightarrow{\boldsymbol{F}}_{2}$ are $F_{1}=50.0 \mathrm{~N}$ and $F_{2}=90.0 \mathrm{~N}$. Determine the magnitude of $\overrightarrow{\boldsymbol{F}}_{3}$ and the angle θ such that	
the resultant force acting on the ball is zero.	
4.	Given that $\boldsymbol{P}=2 \boldsymbol{i}+\boldsymbol{j}-5 \boldsymbol{k}$ and $=3 \boldsymbol{i}+6 \boldsymbol{j}+2 \boldsymbol{k}$, find the resultant $(\boldsymbol{P}+\boldsymbol{Q})$ and the unit vector in the direction of the resultant. The drawing shows a force vector that has a magnitude of 475 N. Determine the x, y and z components of the vector. Expressed the answer in unit vector form.
6.	Given $\vec{\tau}=\vec{r} \times \vec{F}$, determine the direction of torque $\vec{\tau}$ in the Figure.

Significant Figures and Uncertainties Analysis	
1.	Multiply $3.079 \times 10^{2} \mathrm{~m}$ by $0.068 \times 10^{-1} \mathrm{~m}$, taking into account significant figures.
2.	Add $\left(9.2 \times 10^{3} \mathrm{~s}\right)+\left(8.3 \times 10^{4} \mathrm{~s}\right)+\left(0.008 \times 10^{6} \mathrm{~s}\right)$, taking into account significant figures.
3.	What is the percent uncertainty in the volume of a spherical beach ball of radius $r=0.84 \pm 0.04 \mathrm{~m} ?$
4.	What is the area, and its approximate uncertainty, of a circle of radius $3.1 \times 10^{4} \mathrm{~cm} ?$
5.	A friend asks to borrow your precious diamond for a day to show her family. You are a bit worried, so you carefully have your diamond weighed on a scale which reads 8.17 grams. The scale's accuracy is claimed to be ± 0.05 grams. The next day you weigh the returned diamond again, getting 8.09 grams. Is this your diamond?

Additional Knowledge: Errors in Measurement

The difference between the actual value of a quantity and the value obtained in measurement is the error. There are two main types of errors: systematic errors and random errors.

Systematic errors are cumulative errors that can be corrected, if the errors are known. It results from:

- an incorrect position of the zero point, known as zero error
- an incorrect calibration of the measuring instrument

Random errors may occur for a variety of reasons. They may be due to

- personal errors such as parallax error (due to wrong position of the eye when reading a scale)
- natural error such as changes in wind, temperature, humidity, refraction, magnetic field or gravity while the experiment is in progress
- the use of a wrong technique of measurement such as applying excessive pressure when turning a micrometer screw gauge

Vernier Calliper

Note:

Since the vernier callipers has an accuracy of $\mathbf{0 . 0 1 ~ c m}$, it means any readings taken from the vernier callipers has to be written to two decimal places even it is a whole number, e.g. 1.00 cm .

How to take reading:

Main scale reading:

- Read the mark on the main scale preceding the ' 0 ' mark on the vernier scale. The ' 0 ' mark on the vernier scale acts as pointer for the main scale reading.
- The ' 0 ' mark on the vernier scale in this example lies between 3.2 cm and 3.3 cm . Therefore, the reading on the main scale is 3.2 cm .

Vernier scale:

- Read the mark on the vernier scale that is exactly in line or coincides with any mark on the main scale.
- In this example, the fourth mark on the vernier scale exactly in line with a mark on the main scale. Therefore, the vernier scale reading is 0.04 cm .

Vernier callipers reading
$=$ Main scale reading + Vernier scale reading
$=3.24 \mathrm{~cm}$
Correct reading: $(3.24 \pm 0.01) \mathrm{cm}$

Exercise

Micrometer Screw Gauge
 Herser

How to take reading:
 Main scale reading:

- Read the main scale reading at the edge of the thimble. Take note that an additional half scale division (0.5 mm) must be included if the mark below the horizontal reference line is visible. Therefore, the reading on the main scale is 7.5 mm .

Vernier scale:

- Read the thimble scale reading at the point where the horizontal reference line of the main scale is in line with the graduation mark on the thimble scale. Therefore, the vernier scale reading is 0.26 mm .

Micrometer screw gauge reading

$=$ Main scale reading + Thimble scale reading $=7.76 \mathrm{~cm}$

Correct reading: $(7.76 \pm 0.01) \mathrm{mm}$

Correct reading $=$ Reading obtained - Zero error

Exercise

Question

Determine the zero error:

Zero Error = \qquad mm

Zero Error = \qquad mm Zero Error = \qquad mm

Determine the actual reading:

Zero Error. $=+0.23 \mathrm{~mm}$
Actual Reading $=$ \qquad

$$
\text { Zero Error }=-0.21 \mathrm{~mm}
$$

Actual Reading $=$ \qquad

